projectdiscover之naabu 端口扫描器源码学习
ProjectDiscovery组织开源了很多自动化扫描的内部工具和研究,例如subfinder 被动子域名发现工具
、nuclei 基于模板的可配置快速扫描工具
、naabu 端口扫描器
、dnsprobe dns解析器
、httpx 多功能http工具包
,它们都是基于Go
语言编写,并且在实际渗透中有极大的作用。我非常喜欢这个组织开源的软件,它也是我学习Go
语言的动力之一,所以计划写一个系列文章来研究下它们的代码。
介绍
naabu的项目地址是:https://github.com/projectdiscovery/naabu
几个特性:
- 基于syn/connect两种模式扫描
- 多种输入类型支持,包括HOST / IP / CIDR表示法。
- 自动处理多个子域之间的重复主机
- Stdin 和stdout 支持集成到工作流中
- 易于使用的轻量级资源
▶ naabu -host hackerone.com
__
___ ___ ___ _/ / __ __
/ _ \/ _ \/ _ \/ _ \/ // /
/_//_/\_,_/\_,_/_.__/\_,_/ v2.0.3
projectdiscovery.io
[WRN] Use with caution. You are responsible for your actions
[WRN] Developers assume no liability and are not responsible for any misuse or damage.
[INF] Running SYN scan with root privileges
[INF] Found 4 ports on host hackerone.com (104.16.100.52)
hackerone.com:80
hackerone.com:443
hackerone.com:8443
hackerone.com:8080
扫描方式
扫描相关的代码在 v2/pkg/scan
目录
cdn check
顾名思义,跟踪一下,发现cdn检查调用的是github.com/projectdiscovery/cdncheck
中的项目。
通过接口获取一些CDN的ip段,判断ip是否在这些ip段中
// scrapeCloudflare scrapes cloudflare firewall's CIDR ranges from their API
func scrapeCloudflare(httpClient *http.Client) ([]string, error) {
resp, err := httpClient.Get("https://www.cloudflare.com/ips-v4")
if err != nil {
return nil, err
}
defer resp.Body.Close()
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
return nil, err
}
body := string(data)
cidrs := cidrRegex.FindAllString(body, -1)
return cidrs, nil
}
// scrapeIncapsula scrapes incapsula firewall's CIDR ranges from their API
func scrapeIncapsula(httpClient *http.Client) ([]string, error) {
req, err := http.NewRequest(http.MethodPost, "https://my.incapsula.com/api/integration/v1/ips", strings.NewReader("resp_format=text"))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", "application/x-www-form-urlencoded")
resp, err := httpClient.Do(req)
if err != nil {
return nil, err
}
defer resp.Body.Close()
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
return nil, err
}
body := string(data)
cidrs := cidrRegex.FindAllString(body, -1)
return cidrs, nil
}
// scrapeAkamai scrapes akamai firewall's CIDR ranges from ipinfo
func scrapeAkamai(httpClient *http.Client) ([]string, error) {
resp, err := httpClient.Get("https://ipinfo.io/AS12222")
if err != nil {
return nil, err
}
defer resp.Body.Close()
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
return nil, err
}
body := string(data)
cidrs := cidrRegex.FindAllString(body, -1)
return cidrs, nil
}
// scrapeSucuri scrapes sucuri firewall's CIDR ranges from ipinfo
func scrapeSucuri(httpClient *http.Client) ([]string, error) {
resp, err := httpClient.Get("https://ipinfo.io/AS30148")
if err != nil {
return nil, err
}
defer resp.Body.Close()
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
return nil, err
}
body := string(data)
cidrs := cidrRegex.FindAllString(body, -1)
return cidrs, nil
}
func scrapeProjectDiscovery(httpClient *http.Client) ([]string, error) {
resp, err := httpClient.Get("https://cdn.projectdiscovery.io/cdn/cdn-ips")
if err != nil {
return nil, err
}
defer resp.Body.Close()
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
return nil, err
}
body := string(data)
cidrs := cidrRegex.FindAllString(body, -1)
return cidrs, nil
}
connect扫描
naabu的connect扫描就是简单的建立一个tcp连接
// ConnectVerify is used to verify if ports are accurate using a connect request
func (s *Scanner) ConnectVerify(host string, ports map[int]struct{}) map[int]struct{} {
for port := range ports {
conn, err := net.DialTimeout("tcp", fmt.Sprintf("%s:%d", host, port), s.timeout)
if err != nil {
delete(ports, port)
continue
}
gologger.Debugf("Validated active port %d on %s\n", port, host)
conn.Close()
}
return ports
}
syn扫描
syn扫描只能在unix操作系统上运行,如果是windows系统,会切换到connect扫描。
syn扫描的原理是只用发一个syn包,节省发包时间,而完整的tcp需要进行三次握手。
获取空闲端口
初始化时,获取空闲端口,并监听这个端口
import github.com/phayes/freeport
func NewScannerUnix(scanner *Scanner) error {
rawPort, err := freeport.GetFreePort()
if err != nil {
return err
}
scanner.listenPort = rawPort
tcpConn, err := net.ListenIP("ip4:tcp", &net.IPAddr{IP: net.ParseIP(fmt.Sprintf("0.0.0.0:%d", rawPort))})
if err != nil {
return err
}
scanner.tcpPacketlistener = tcpConn
var handlers Handlers
scanner.handlers = handlers
scanner.tcpChan = make(chan *PkgResult, chanSize)
scanner.tcpPacketSend = make(chan *PkgSend, packetSendSize)
return nil
}
监听网卡
获取网卡名称
SetupHandlerUnix 监听网卡
const (
maxRetries = 10
sendDelayMsec = 10
chanSize = 1000
packetSendSize = 2500
snaplen = 65536
readtimeout = 1500
)
func SetupHandlerUnix(s *Scanner, interfaceName string) error {
inactive, err := pcap.NewInactiveHandle(interfaceName)
if err != nil {
return err
}
err = inactive.SetSnapLen(snaplen)
if err != nil {
return err
}
readTimeout := time.Duration(readtimeout) * time.Millisecond
if err = inactive.SetTimeout(readTimeout); err != nil {
s.CleanupHandlers()
return err
}
err = inactive.SetImmediateMode(true)
if err != nil {
return err
}
handlers := s.handlers.(Handlers)
handlers.Inactive = append(handlers.Inactive, inactive)
handle, err := inactive.Activate()
if err != nil {
s.CleanupHandlers()
return err
}
handlers.Active = append(handlers.Active, handle)
// Strict BPF filter
// + Packets coming from target ip
// + Destination port equals to sender socket source port
err = handle.SetBPFFilter(fmt.Sprintf("tcp and dst port %d and tcp[13]=18", s.listenPort))
if err != nil {
s.CleanupHandlers()
return err
}
s.handlers = handlers
return nil
}
从网卡中过滤数据包 tcp and dst port %d and tcp[13]=18
%d 即第一步获取的空闲端口,tcp[13]=18 即tcp的第十三位偏移的值为18,即仅抓取 TCP SYN标记的数据包。
监听数据
通过pcap监听数据
func TCPReadWorkerPCAPUnix(s *Scanner) {
defer s.CleanupHandlers()
var wgread sync.WaitGroup
handlers := s.handlers.(Handlers)
for _, handler := range handlers.Active {
wgread.Add(1)
go func(handler *pcap.Handle) {
defer wgread.Done()
var (
eth layers.Ethernet
ip4 layers.IPv4
tcp layers.TCP
)
// Interfaces with MAC (Physical + Virtualized)
parserMac := gopacket.NewDecodingLayerParser(layers.LayerTypeEthernet, ð, &ip4, &tcp)
// Interfaces without MAC (TUN/TAP)
parserNoMac := gopacket.NewDecodingLayerParser(layers.LayerTypeIPv4, &ip4, &tcp)
var parsers []*gopacket.DecodingLayerParser
parsers = append(parsers, parserMac, parserNoMac)
decoded := []gopacket.LayerType{}
for {
data, _, err := handler.ReadPacketData()
if err == io.EOF {
break
} else if err != nil {
continue
}
for _, parser := range parsers {
if err := parser.DecodeLayers(data, &decoded); err != nil {
continue
}
for _, layerType := range decoded {
if layerType == layers.LayerTypeTCP {
if !s.IPRanger.Contains(ip4.SrcIP.String()) {
gologger.Debugf("Discarding TCP packet from non target ip %s\n", ip4.SrcIP.String())
continue
}
// We consider only incoming packets
if tcp.DstPort != layers.TCPPort(s.listenPort) {
continue
} else if tcp.SYN && tcp.ACK {
s.tcpChan <- &PkgResult{ip: ip4.SrcIP.String(), port: int(tcp.SrcPort)}
}
}
}
}
}
}(handler)
}
wgread.Wait()
}
如果dstport为我们监听的端口,并且标志位是 syn+ack,就将端口和ip加入到结果中。
发送数据包
核心内容是从之前监听的tcp发送。
// SendAsyncPkg sends a single packet to a port
func (s *Scanner) SendAsyncPkg(ip string, port int, pkgFlag PkgFlag) {
// Construct all the network layers we need.
ip4 := layers.IPv4{
SrcIP: s.SourceIP,
DstIP: net.ParseIP(ip),
Version: 4,
TTL: 255,
Protocol: layers.IPProtocolTCP,
}
tcpOption := layers.TCPOption{
OptionType: layers.TCPOptionKindMSS,
OptionLength: 4,
OptionData: []byte{0x05, 0xB4},
}
tcp := layers.TCP{
SrcPort: layers.TCPPort(s.listenPort),
DstPort: layers.TCPPort(port),
Window: 1024,
Seq: s.tcpsequencer.Next(),
Options: []layers.TCPOption{tcpOption},
}
if pkgFlag == SYN {
tcp.SYN = true
} else if pkgFlag == ACK {
tcp.ACK = true
}
err := tcp.SetNetworkLayerForChecksum(&ip4)
if err != nil {
if s.debug {
gologger.Debugf("Can not set network layer for %s:%d port: %s\n", ip, port, err)
}
} else {
err = s.send(ip, s.tcpPacketlistener, &tcp)
if err != nil {
if s.debug {
gologger.Debugf("Can not send packet to %s:%d port: %s\n", ip, port, err)
}
}
}
}
// send sends the given layers as a single packet on the network.
func (s *Scanner) send(destIP string, conn net.PacketConn, l ...gopacket.SerializableLayer) error {
buf := gopacket.NewSerializeBuffer()
if err := gopacket.SerializeLayers(buf, s.serializeOptions, l...); err != nil {
return err
}
var (
retries int
err error
)
send:
if retries >= maxRetries {
return err
}
_, err = conn.WriteTo(buf.Bytes(), &net.IPAddr{IP: net.ParseIP(destIP)})
if err != nil {
retries++
// introduce a small delay to allow the network interface to flush the queue
time.Sleep(time.Duration(sendDelayMsec) * time.Millisecond)
goto send
}
return err
}
其他
修改ulimit
大多数类UNIX操作系统(包括Linux和macOS)在每个进程和每个用户的基础上提供了系统资源的限制和控制(如线程,文件和网络连接)的方法。 这些“ulimits”阻止单个用户使用太多系统资源。
import (
_ "github.com/projectdiscovery/fdmax/autofdmax"
)
修改ulimit,只针对unix系统
fdmax.go
// +build !windows
package fdmax
import (
"runtime"
"golang.org/x/sys/unix"
)
const (
UnixMax uint64 = 999999
OSXMax uint64 = 24576
)
type Limits struct {
Current uint64
Max uint64
}
func Get() (*Limits, error) {
var rLimit unix.Rlimit
err := unix.Getrlimit(unix.RLIMIT_NOFILE, &rLimit)
if err != nil {
return nil, err
}
return &Limits{Current: uint64(rLimit.Cur), Max: uint64(rLimit.Max)}, nil
}
func Set(maxLimit uint64) error {
var rLimit unix.Rlimit
rLimit.Max = maxLimit
rLimit.Cur = maxLimit
// https://github.com/golang/go/issues/30401
if runtime.GOOS == "darwin" && rLimit.Cur > OSXMax {
rLimit.Cur = OSXMax
}
return unix.Setrlimit(unix.RLIMIT_NOFILE, &rLimit)
}
随机IP PICK
import "github.com/projectdiscovery/ipranger"
ipranger 实现就是来自masscan的随机化地址扫描算法
在 https://paper.seebug.org/1052 写过
随机化地址扫描
在读取地址后,如果进行顺序扫描,伪代码如下
> for (i = 0; i < range; i++) {
scan(i);
}
但是考虑到有的网段可能对扫描进行检测从而封掉整个网段,顺序扫描效率是较低的,所以需要将地址进行随机的打乱,用算法描述就是设计一个
打乱数组的算法
,Masscan是设计了一个加密算法,伪代码如下
> range = ip_count * port_count;
for (i = 0; i < range; i++) {
x = encrypt(i);
ip = pick(addresses, x / port_count);
port = pick(ports, x % port_count);
scan(ip, port);
}
随机种子就是
i
的值,这种加密算法能够建立一种一一对应的映射关系,即在[1…range]的区间内通过i
来生成[1…range]内不重复的随机数。同时如果中断了扫描,只需要记住i
的值就能重新启动,在分布式上也可以根据i
来进行。
- 如果对这个加密算法感兴趣可以看 Ciphers with Arbitrary Finite Domains 这篇论文。
可缓存的hashmap
ipranger
中使用了github.com/projectdiscovery/hmap/store/hybrid
看了下代码,是一个带缓存功能的hashmap,也带有超时时间。
所有添加的目标(ip)会加入到缓存中,让我想到ksubdomain
中也有实现类似的功能,不过是在内存中进行,导致目标很多的时候内存操作会有点问题。如果用这个库应该可以解决这个问题 。
总结
naabu的代码架构很清晰,一个文件完成一个功能,通过看文件名就知道这个实现了什么功能,所以看代码的时候很轻松。
但是从代码来看,naabu只是实现了在linux上的
syn
,在Windows上会使用三次握手的tcp连接(基于pcap,可以实现在windows上组合tcp发包的,但naabu没有实现)。naabu的目标添加是先循环读取目标一遍,如果目标cidr地址很大,会造成很多内存占用(虽然也会有硬盘缓存),如果边读取边发送就没有这种烦恼,但naabu不是这样的。
naabu的重试次数,不是对某个ip:port的发送失败的重试,是对所有目标的重试。。
naabu还不是心中完美的扫描器 - =